Los neurotransmisores son mensajeros químicos esenciales para la comunicación entre neuronas. Recientemente, se han desarrollado sensores ópticos para visualizar los neurotransmisores con una resolución sin precedentes. Estos sensores permiten estudiar tanto las conexiones neuronales como su capacidad de adaptación, y con ello esclarecer los diferentes procesos cognitivos relacionados con la memoria y el aprendizaje.
Una característica clave del cerebro es la función de adquirir nueva información o «aprender». El proceso de aprendizaje es crítico para la vida cotidiana y depende de las conexiones nerviosas y de su capacidad de adaptación.
En el cerebro, la información se transmite de una neurona a la siguiente a través de impulsos quimio-eléctricos. Cuando un impulso eléctrico o potencial de acción llega a una neurona, denominada presináptica, ésta libera agentes químicos, llamados neurotransmisores, al espacio sináptico. Los neurotransmisores se difunden rápidamente y se unen a receptores específicos ubicados en la membrana de la neurona receptora próxima, denominada postsináptica. Este proceso causa que los canales iónicos de la neurona postsináptica se abran y se propague el potencial de acción si la sinapsis es lo suficientemente robusta.
Algunos de los principales neurotransmisores reguladores del sistema nervioso central son aminoácidos, como el glutamato o la glicina. En condiciones normales, el glutamato y la glicina juegan un papel principal en los procesos de aprendizaje y memoria, ya que activan los receptores denominados AMPA y NMDA. Estos receptores son canales iónicos que permiten el paso de ciertos iones cuando son activados por la unión de sus sustratos. Este proceso causa que se propague el potencial de acción y por lo tanto la transmisión de la información.
La activación simultánea y continuada de estos receptores provoca el reclutamiento de más receptores en la membrana de la neurona postsináptica. Como resultado, esa sinapsis es más sensitiva y la conexión entre las dos neuronas es más robusta que antes. Esta habilidad de las sinapsis de reforzarse o debilitarse con el tiempo en respuesta a un incremento o reducción de su actividad se conoce como plasticidad sináptica.
Se especula que la plasticidad sináptica es un proceso crítico en la memoria y el aprendizaje y que depende principalmente de los receptores NMDA. El conocimiento limitado que tenemos de la señalización de neurotransmisores en dichos procesos nos impide comprender por completo la plasticidad sináptica y por lo tanto los mecanismos del aprendizaje y la memoria.
En los últimos años se han desarrollado varios sensores ópticos para la visualización de glutamato. Estos sensores están formados por un componente que une glutamato y un componente que produce fluorescencia. El mecanismo de acción común consiste en que las proteínas que unen glutamato sufren un cambio en su estructura al unir dicho sustrato. Este cambio estructural implica un cambio en la intensidad de fluorescencia del sensor. Por lo tanto, la presencia de glutamato se puede asociar al cambio de la fluorescencia que es detectado.
Fuente: http://www.sebbm.es/web/es/divulgacion/rincon-profesor-ciencias/articulos-divulgacion-cientifica/2742-sensores-opticos-para-estudiar-los-procesos-de-aprendizaje-y-memoria